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[2 t 21 cycloadditions of silyl enol ethers with dimethyl acetylenedicarboxylate, dimethyl fumarate, and methyl 
crotonate using titanium tetrachloride catalysis are reported. The cyclobutene adducts undergo a two-carbon ring 
expansion during acid hydrolysis. 

We have shown previously tha t  silyl enol ethers undergo 
[2 + 21 cycloaddition with ethyl propiolate under t i tanium 
tetrachloride catalysis and that in the case of cyclic enol ethers 
t he  derived silyloxycyclobutenes can be opened t o  afford 
two-carbon ring-expanded products.2 We now report that a 
similar cycloaddition-ring expansion can also be accomplished 
with dimethyl acetylene dicarboxylate. Furthermore, we have 
found that certain a,P-unsaturated esters will also undergo 
cycloaddition with silyl enol ethers t o  afford cyclobutane 
adducts. 

T h e  results of the  TiC14-catalyzed cycloaddition of tri- 
methylsilyl (Measi) and  ter t -  butyldimethylsilyl (BuMezSi) 
enol ethers with dimethyl acetylenedicarboxylate are listed 
in Table  1. Typically, the  reaction is carried out  by addition 
of the silyl ether to  a -78 "C CHzClz solution of T i c &  (1 equiv) 
and dimethylacetylenedicarboxylate (1.5 equiv). The  reaction 
is virtually instantaneous, and  after several minutes at -78 
"C the  product is isolated by ether extraction. T h e  BuMezSi 
group is relatively stable t o  the  reaction conditions and  is re- 
tained in the  cycloadduct, whereas the  MesSi group is usually 
cleaved. Since the  MeaSi group is also rapidly cleaved from 
the starting enol ether, the  yields are significantly better with 
the  corresponding BuMezSi ethers. However, some cleavage 
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of the  BuMezSi enol ether does occur, and  the  yields are 
generally lower than in the  corresponding cycloadditions with 
ethyl p r ~ p i o l a t e . ~  

Also listed in Table I a re  the  products from the  aqueous 
acetic acid hydrolysis of t he  cycloadducts. Silyl ethers 9 and  
14 are converted to  the known ring expansion products lo4 and 
1 5 F  which have been prepared previously from the  corre- 
sponding enamines. Compound 15 results from decarboxyl- 
ation of 12,4c,e which is t he  direct product from MesSi ether 
11. The  cycloadduct from the silyloxycyclooctene 16 opens at 
room temperature t o  afford cyclodecadiene 17, which is con- 
verted by hydrolysis to  the  known keto diester 18.4C3e 

The  bicyclo[3.2.0]heptenyl alcohols 2 and 7 are stable under 
the  hydrolysis conditions. Trea tment  with sodium hydride 
in ter t -  butyl alcohol (or T H F )  affords the  cleavage products 
19 (57%) and 20 (40%) rather than ring-expanded  material^.^ 
T h e  formation of 19 and  20 may involve Michael addition of 
alkoxide a t  C-6 followed by fragmentation of the  C I , ~  bond 
with loss of alkoxide t o  generate the  P,y-unsaturated isomer 
which isomerizes to  the  observed product.6 

Cycloadditions with dimethyl fumarate (21) and methyl 
crotonate (23) were also investigated, and  modest yields of 
cyclobutane adducts 22 and 24 and 25 were obtained (yields 
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TABLE 1 

CYCLOADDITION OF SlLYL ENOL ETHERS 
AND DIMETHYL ACETYLENE DICARBOXYLATE 

SI &Y L ETHER CVCLOADOUCT t o o  YIELD;' WYDROLYSIS PPODUCTP 

G r M e  

3 

5 

a 

Q COiMe (@@' 
cslu- 8, 

- G C O s M e  l, - COiMe "" '8 COpMe 
6 

a Isolated by silica gel chromatography. None of the yields have 
been optimized. * Acetic acid-THF-HzO, reflux. 

C02Me ___) NaH q C O 2 M e  

C02Me 
t-BuOH 

H 

2 R = H  
7 R=CHi 
- 
- 

1 9 R = H  
- 20 R = CHI 
- 

not optimized). T h e  stereochemistry of these products was 
determined by NMR spectroscopy (cf. Experimental Sec- 
tion). Mukaiyama has obtained Michael adducts from reaction 
of Me3Si enol ethers with unsaturated  ester^.^ Our results 
suggest that if the Mukaiyama reaction also involves a [2 t 
Z] cycloaddition, the Me3Si group is cleaved from the cy- 

OSiM e&" 

cloadduct and cyclobutane opening then leads to the observed 
Michael product. Alternatively, the Michael products may 

result from TiCl4-mediated conversion of the silyl enol ether 
to the enolate followed by  Michael addi t ion6 

Experimental Section 
Infrared (IR) spectra were recorded on a Perkin-Elmer 137 spec- 

trometer. Nuclear magnetic resonance (NMR) spectra were obtained 
with Varian A-60 and HA-100 instruments with an Me4Si internal 
standard in CC14 solution unless otherwise stated. Combustion 
analyses were performed by our microanalytical laboratory and the 
microanalytical laboratory, Department of Chemistry, Stanford 
University. 

General Cycloaddition Procedure. Dimethyl 1-( tert-Butyl- 
dimethylsilyloxy)cyclodeca-1,3-diene-2,3-dicarboxylate (17). 
A solution of silyl ether 16 (2.26 g, 9.4 mmol) in 20 mL of CHiClz was 
added dropwise to a -78 "C solution of dimethyl acetylenedicar- 
boxylate (2.13 g, 15 mmol) and TIC4 (1.90 g, 10 mmol) in 25 mL of 
CHZC12. After an additional 10 min at -78 "C, the mixture was diluted 
with ether, washed with water and brine, dried, and evaporated. 
Chromatography on silica gel (25% ether-hexane) afforded 1.97 g of 
crystalline 17. An analytical sample was obtained by recrystallization 
from pentane at -78 "C: mp 78.5-80.0 "C; IR (CC4) 1710,1570,1540, 
1190 cm-l; lH NMR 6 0.20 (s, 3), 0.23 (s, 3),0.92 (s, 9), 3.51 (s, 3), 3.62 
(s, 3), 5.96 (m, 1); UV (hexane) A,,, 230 nm ( 6  12 700). Anal. Calcd for 
C20H3405Si: C, 62.79; H, 8.96. Found: C, 63.05; H, 9.17. 

Cycloadducts 4,6 ,9 ,14 ,  and 17 were characterized by their IR and 
NMR spectra and were converted directly to the hydrolysis prod- 
ucts. 

General Hydrolysis Conditions. Dimethyl 1-Oxocyclodec- 
3-ene-2,3-dicarboxylate (18). Silyl ether 17 (1.71 g, 4.5 mmol) was 
refluxed for 2 h in 4 mL of acetic acid and 4 mL of THF containing 
2 mL of water. Ether extraction and silica gel chromatography af- 
forded 952 mg (80%) of 18 which had IR and IH NMR spectra in ac- 
cord with those reported in the literat~re.4~3~ Compounds 12$se 
and 154e also had spectra (IR, NMR) in agreement with those in the 
literature. 

Formation of 19 and 20. Cycloaddition of enol ether 1 and di- 
methyl acetylenedicarboxylate gave alcohol 2 in 18% yield: IR (film) 
3400,1710,1640,1280,1150 cm-I; lH NMR 6 1.67 (m, 6), 3.08 (m, l),  
3.82 (s, 6). Anal. Calcd for CllHI4O5: C, 58.40; H. 6.24. Found: C, 58.58; 
H, 6.31. 

Alcohol 2 (455 mg, 2 mmol) in 25 mL of tert-butyl alcohol was 
treated with sodium hydride (2 mmol) at 15 "C. After 10 min, several 
drops of acetic acid were added and the product was isolated with 
ether. Chromatography on silica gel (50% ether-hexane) gave 258 mg 
(57%) of 19 as a light yellow oil: IR (film) 1735,1700,1620,1200,990 
cm-'; 'H NMR 6 2.00 (m, 2),  2.40 (m, 2) ,  3.16 (triplet of triplets, 2, J 
= 1,6 Hz), 3.72 (s, 3), 3.83 (s, 3), 4.08 (t, 2, J = 1 Hz). Anal. Calcd for 
CllHl4OS: C, 58.40; H, 6.24. Found: C, 58.43; H, 6.32. 

Under similar conditions, alcohol 7 gave 20 (40% yield): IR (film) 
1735,1700,1620,1200 cm-'; 'H NMR 6 1.13 (d. 3, J = 6 Hz), 2.33 (m, 
41, 3.06 (m, 21, 3.68 (s, 31, 3.80 (s, 3L4.06 (t, 2, J = 1 Hz). 

Although both 19 and 20 appear to be single isomers, their stereo- 
chemistry has not been determined. 

Dimethyl 1-( tert-Butyldimethylsilyloxy)bicyclo[6.2.0]deca- 
9,lO-dicarboxylate (22). Reaction of silyl ether 16 with dimethyl 
fumarate under the above general conditions afforded 22 (309" yield) 
as a colorless oil after chromatography on silica gel (20% ether-hex- 
ane): IR (film) 1735,1220,1160,1070,840,770 cm-l; lH NMR 6 0.13 
(s, 3),0.20 (s, 3), 0.92 (s, 91, 2.20 (m, 1, H-81, 2.55 (dd, 1, J = 9,9  Hz, 
H-9), 3.54 (d, 1, J = 9 Hz, H-lo), 3.68 (s. 6). Anal. Calcd for 
CzoH3605Si: C, 62.46; H, 9.44. Found: C, 62.38: H, 9.68. 

Methyl 1 - (  tert-Butyldimethylsilyloxy)-6-methylbicyclo- 
[3.2.0]hepta-7-carboxylate (24 and 25). Reaction of silyl ether 3 
with methyl crotonate afforded cycloadducts 24 and 25 (27% yield) 
in a 60:40 ratio. The two isomers were separated by chromatography 
on silica gel (5% ether-hexane). 24: IR (film) 1735,1220,845,770 cm-1; 
'H NMR 6 0.83 (s, 9),0.88 (d, 3, J = 5 Hz), 2.42 (m, I ) ,  2.45 (d, 1, J = 
9 Hz, H-7), 3.50 (m, l ) ,  3.62 (s, 3). 25: IR (film) 1735, 1220, 845, 770 
cm-I; 'H NMR 6 0.86 (s, 9), 1.12 (d, 3, J = 6 Hz), 2.00 (m, 2, H-5,6), 
2.74 (d, 1, J = 8 Hz, H-7),3.64 (s, 3). Anal. (of the isomeric mixture) 
Calcd for C16H~003Si: C, 64.38; H, 10.13. Found: C. 64.71, H, 10.35. 

Registry No.-1, 19980-43-9; 2 ,  68151-55-3; 3, 68081-15-2; 4,  
68151-56-4; 5,68081.16-3; 6,68151-57-5; 7.68151-61-1; 8, m79i-22.4; 
9,  68151-58-6; io, 68151-62-2; 11,  22081-48-7; 12, 68151-63-3; 13, 
68-081-19-6; 14, 68151-59-7; 15, 42205-59-4; 16, 67788-03-8; 17, 
68151-60-0; 18,68151-64-4; 19,68151-65-5; 20,68151-66-6; 21,624-  
49-7; 22, 68151-67-7; 23, 623-43-8; 24, 68151-68-8; 25, 68199-21-3; 
dimethyl acetylenedicarhoxylate, 762-42-5. 
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The intramolecular 1,3-dipolar cycloaddition reactions of several aziridine carboxylates containing a neighboring 
?r bond were studied. The only reaction found to occur on thermolysis of cis- and trans-allyl l-isopropyl-2-(p-bi- 
phenyl)-3-aziridinecarboxylate corresponds to isomerization about the three-membered ring. With this system, 
equilibration of the ring-opened azomethine ylides occurs at a faster rate than internal cycloaddition. Attachment 
of an electron-withdrawing carbomethoxy substituent to the double bond was found to significantly enhance the 
intramolecular dipolar cycloaddition rate. Isomerization of the less reactive cwazomethine ylide to the trans form 
was still found to compete with the cycloaddition reaction. An additional system which was also studied involved 
the thermal chemistry of cis- and trans- methyl N-(4-carbomethoxy-3-butenyl)-2-(p-biphenyl)-3-aziridinecarbox- 
ylate. The azomethine ylides derived from these aziridines undergo regioselective cycloadditions which are compat- 
ible with the principles of frontier MO theory. 

1,3-Dipoles bearing a functional group able to  behave as 
a dipolarophile are extremely interesting substrates. In fact, 

dimer 3.38 The formation of 3 was suggested to arise via the 
cyclization of a transient 1.3-dipolar azomethine ylide 2. 

the  ~ intramolecular cycloaddition reaction of a properly 
functionalized 1,3-dipole represents a general scheme for the 
synthesis of novel fused ring heterocycle~. l -~ Intramolecular 
dipolar cycloadditions have been carried out with nitrones,4-1° ph CH, 
d i a z ~ a l k a n e s , ~ ~ - ~ ~  azides,lGZ0 azomethine imines,21s22 carbonyl 

As part  of a program directed toward a study of the scope and 
oxides,23 nitrile i m i n e ~ , ~ ~ , 2 5  nitrile ylides,26 and sydnones.Z7 

generality of intramolecular dipolar cycloaddition reactions, 
we had the occasion to prepare several aziridine carboxylates 

CH, % 

H Q - 
CH3 

1 
containing a r bond in close proximity to the three-membered 
heterocyclic ring. Reactions involving the thermal and pho- 
tochemical cleavage of aziridines to azomethine ylides and 
their subsequent 1,3-dipolar additions to  reactive carbon- 
carbon mul t ide  bonds are well known.28-36 Huiseen and co- 
workers havekrmly established that the thermal r&' g cleavage 
of aziridines involves stereospecific, conrotatory ring open- 
ing.37 On irradiation a disrotatory cleavage of the aziridine ring 
was 0bserved.~7 Although the bimolecular cycloaddition re- 
actions of the ring-opened valence tautomer of aziridines are 
well documented, there is only one example in the literature 
dealing with an intramolecular cycloaddition reaction of an 
azomethine ylide. Recently, Deyrup and co-workers reported 
tha t  the reaction of the aldiminium salt 1 with base afforded 
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CH, 

CH, 

3 

In this paper, we wish to describe several of the features 
associated with the intramolecular dipolar cycloaddition re- 
action of azomethine ylides which possess a neighboring 
double bond. 
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